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Current genome assembly methods1:
1. De Bruijn graph (Fig 1): 
  - Stores all sequences and their connections in one large graph.
  - Heuristic methods required to extract genome sequence from graph.
2. Overlap layout consensus method (Fig 2):
  - Use similarities between DNA sequences to create longer consensus sequences.
  - Repetition in large genomes makes it easy for this method to incorrectly overlay two 

      sequences that share a common region but are in different parts of the genome.
Problems:
• Both methods are effective at assembling small genomes, but they do not scale well as 

genome size and data set size increase.
• Poor scaling occurs because repeats are not initially avoided.
• The Pseudacris feriarum genome is large (4.5 Gb) and has numerous repeats, making it 

difficult to assemble with current methods.
Solution:
• Avoid the issues caused by repeats by 
 1) identifying SCKs (Single-Copy Kmers),         
 2) identifying their relative positions in the genome, 
 3) estimating the intervening sequences at the end of the process.
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New Genome Assembly Method

Relevant Vocabulary
• Base pairs (bps): nucleotides; ATCG
• Genome: the full collection of genetic material in the nucleus of an organism
• Reads/sequences: string of nucleotides representing a segment of the genome
• DNA sequencing: method to determine the order of nucleotides in a section of DNA
• Genome assembly: the process of reconstructing a genome’s sequence using reads
• Kmer: a short sequence of nucleotides of length K (e.g. 5mer, 6mer)
• SCK: Single-Copy Kmer; a sequence that appears once in the genome

• Repetitive regions: portions of the genome that appear more than once
• Coverage: the number of times a portion of DNA is sequenced
• Pseudacris feriarum: upland chorus frog, found in the SE United States
• Size of genome: 4.5 billion bases (gigabases, Gb)

Figure 1 shows an example of a de Bruijn 
graph. The method breaks sequences into 
smaller kmers and tracks their connections. 
The graph contains the entire genome.

1. Identify optimal length for SCKs
• Two types of sequencing data
• Short, high-quality reads & long, low-quality reads

• Issues
• Kmers need to be long enough to be unique in genome
• Kmers need to be short enough to minimize sequencing error effects (~13%)

• After intense study, we found 18 base pairs is the optimal kmer length.
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Figure 4 shows the probability of observing a 
kmer 0-10 times by chance. By 18 base pairs 
long, it is extremely unlikely to see a given 
kmer by chance. 

Figure 5 shows the probability of finding at least 1 
kmer in 25 reads without an error for the given 
kmer sizes. With an error rate of 0.13 and a kmer 
size of 18, we expect to see almost every SCK at 
least once.

3. Final SCK Selection
• First filtered SCKs by short, high-quality reads. Selected initial SCKs that 

appeared within the desired coverage and did not contain homo-polymers 
likely resulting from sequencing error.

• SCKs from previous step were then filtered using long, low-quality reads. 
With a 13% sequencing error, each SCK is expected to appear in only 2 
reads. To make sure that only SCKs are selected, only kmers that appear 2-6 
times in the long reads were selected.

2. SCK Distribution
• Identified homozygous and heterozygous peaks using 18mer coverage values.
• Chose homozygous SCKs to avoid phasing issues.
• Selected 18mers within the coverage range (50x-58x), determined using the 

observed SCK homozygous peak and avoiding overlap with the heterozygous 
peak (Fig 6).

Figure 3 represents the pipeline for our proposed method. Our method relies on identifying SCKs, 
clustering SCKs, tracking their relative positions to one another, and then finally overlaying reads. 

4. Chosen SCKs
• After the above steps, we obtained 11,813,926 SCKs to be used for assembly  

Next steps: 
• Use chosen SCK set to estimate relative positions of SCKs along each 

chromosome.
• Previous linking using short reads on mouse chromosomes allowed for  

grouping of non-repetitive regions. 
• Use linking data and long reads to span large repeat regions. 

Computational Costs:
• Our goal is to reduce the computational cost of genome assembly since 

current methods require large amounts of disk space and/or RAM.
• Currently our kmer selection process can be performed in 7 hours using 

300 gigabytes of RAM. Additional steps are expected to be efficient.

Future considerations and implications:
• Use previously-assembled genomes to determine if proposed method can 

successfully re-assemble other genomes.
• Only 1% of eukaryotic genomes have currently been assembled2. There is 

need for a new, faster, and computationally-cheaper method.

Figure 6 represents the 
observed distribution of 18mers 
over different coverage values. 
We wrote a method to identify 
two distinct kmer peaks: 
heterozygous (left) and 
homozygous (right). The 
chosen SCK coverage range 
(50x-58x) is highlighted in 
gray.

Figure 2 represents the Overlap Layout Consensus method. 
The method aligns reads based on common regions.

De Bruijn Graph Methods (kmer size = 3) Overlap Layout Consensus Methods

Figure 7 depicts a simulated representation of long reads from a region of a chromosome. The 
ticks represent sequencing error in the reads while the dots represent error-free SCKs. To 
maximize use of long reads, reads will have to be aligned based on shared SCKs.


